INITIAL-VALUE PROBLEM FOR THE MOTION IN AN UNDUI_*;‘ATING SEA
OF A BODY WITH FIXED EQUILIBRIUM POSITION*)

by
John V.Wehausen®**
1, Introduction

We shall consider a body moving on or beneath the free surface of a
heavy inviscid fluid. The initial position and velocity of both fluid and body
are assumed to be known, and we further allow the possible presence of
'known waves' which may diffract upon the body and also cause it to move
if its motion is not constrained. The motion of the fluid at the initial instant
will be assumed to be irrotational. Hence it remains so. The body is sup-
posed to have zero average velocity in both translation and rotation and
its motions are assumed small enough so that the boundary conditions to
be satisfied on the body can be linearized and satisfied at its equilibrium
position, Concomitant with this, we assume that the boundary conditions
on the free surface can also be linearized, We shall be concerned with
various aspects of the motion after the initial instant,

The method of analysis which is used was introduced by Volterra (1934),
has been carried further by Finkelstein (1957), and is expounded in both
Stoker's Water waves (1957, pp. 187-196) and in Wehausen and Laitone's
Gravity waves (1960, pp, 803-607), The novelty here consists in certain
decompositions of the velocity potential which allow one to derive Cummin's
(1962) results for the initial-value problem with no waves present by what
seems to the author to be a more direct approach and at the same time
to find analogues for unsteady motion of the Haskind relations (1957; see
also Newman, 1962) between the force and moment acting on the body as-
sociated with diffracted waves and with forced waves,

In the last section the various forces and moments acting on the body
are put together in the equations of motion for the (small) translational
and rotational motions of the body, These take the form of six coupled
integro-differential equations, Certain coefficients and kernels occurring
in these equations require prior solution of integral equations in which the
shape of the body but not its motion is involved, This is one of the advantages
of linearization. The solution of the equations themselves is not considered
here, We mention, however, that Ursell (1964) has treated the initial-value
problem for a half-immersed circular cylinder in still water, but by a quite
different method from that used here, Earlier, Sretenskii (1937) had derived
an integro-differential equation for a special case of the present problem
and solved it numerically for a particular body.

The integral equations mentioned above are discussed in Appendix III,
where it is shown that they can be reduced to Fredholm integral equations.
No attempt is made to establish the existence of a solution. Uniqueness of
solution follows easily from an extension of Volterra's original treatment
of this problem,

Some of the results, for example, the Cummins decomposition, can be
extended to allow the body to have a constant translational velocity. This
has recently been done by Wen-Chin Lin [Ph.D. dissertation, University
of California, Berkeley, 1966],

2. Mathematical formulation

Let Oxyz be an inertial right-handed coordinate system with Oy directed
oppositely to gravity and with Oxz lying in the plane of the undisturbed free
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of this paper.
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surface, Let O%92 be a system fixed in the body and coinciding with Oxyz
when the body is at rest in its equilibrium position. Then, if excursions
of the body from its equilibrium position are 'small', and if one discards
terms higher than first order in the excursions, the two systems are
related by the following equation:

(%, ¥, 2)=(R, §, 2) + (x1(1), y1(1), 22 (1) + (@(t), B(1), 7(1))x(%, §, 2)
=(ﬁ,§’a2)+(X1.-}’1,Zl)+(a,6,'Y)X(X:Y:Z) (13)

which we may also write in the following form:
3
r=f+ I [ag(t) extas () exxr], (1b)
k=1

where e,,€e,,€3, are the unit vectors in the directions Ox, Oy, Oz, res-
pectively, and

@1=%Xy, @=y1, @3=z1, 4=, az=f, og=v.

Here (xy,Yy1,21) describes the translational displacements and (e, 5, 7)
the angular ones, Henceforth we shall not need the coordinate system
O%JzZ.

The motion of the fluid may be described by means of a velocity potential
#x,v,2,t). The linearized boundary conditions which it must satisfy are

the following:

b (x,0,2,t)+ g¢y= 0, (2a)

3
Bols=Valx 3,2, 9= B [ar(tn- extéu (9 (rxn)-eg]

6 .
= L ax(tng (2b)
¢n|B =0, (2c)

where S is the wetted surface of the body in its equilibrium position and
B the bottom. We shall always take the normal vector n to be pointing
out of the fluid, The components ng4, n;, ng are defined by

ny=(rxn)-exp, k=4,5,6.

if the fluid is infinitely deep, the last condition is replaced by

lim ¢Sy= 0. (2d)

y—=-=

In addition, we require that 4, 4,, grad ¢ be bounded in the region oc-
cupied by fluid. : '

Ve shall further suppose that ¢(x,y,z,0) and ¢.(x,0,z,0) are known,
Y(x,z,t), the free surface elevation, is given in linearized theory by

Y(X, z, t):_ ¢t(xa O»Z»t)i (3)

g =

and Y, (X, Z, t) by

Y, (%, 2, t) = (x,0, 2, t).

y



The motion of a body in an undulating sea 3
3. A preliminary decomposition

We shall attempt to separate the velocity potential ¢(P,t) into two parts,
a 'forced-wave' potential §, representing the waves caused by the motion
of the floating body, and a 'free-wave' potential @¢w representing the wave
motion which would take place if the body were not moving, In order to
describe ¢y we must know an 'incoming-wave' potential ¢;(P,t). This might
be, typically, plane sinusoidal travelling, or standing, waves of given
length, but could also be a more complex sea representable iy a Fourier
integral or generalized Fourier series in plane-wave potentials of variable
direction and wave length. The important point is that @;(P,t) should be
known for tZ0. Associated with ¢; will be another function ¢p(P,t), the
'diffracted-wave' potential, which must satisfy the boundary condition

$pn(Ps D5 = -1 (P, 05 - (4)
We now define ¢y, by

by =P+ 9p. (5)
Evidently

pwn(Pst)s =0, t =0, (6)

Since we wish to have

¢= ¢F * ¢w s (7)
¢ must satisfy

b (PoD)|g=v,, t=0. (8)
All functions ¢;, ¢p and @z must, of course, satisfy condition (2a) and
(2c) and be bounded.

We shall suppose that at time t=0 we know ¢ (x,y,2,0), ¢ (X,0,2,0),
¢p (X, ¥, 2, 0), and @p, (%, 0, z,0). Hence, we also know Yr (%,2,0), Yk (%,2,0),
Yy (x,2,0) and Yw,(X,2z,0); where these are determined according to (3)
ifrom the corresponding velocity potential.

4. Volterra's method

Let G(x,y,2;E,1n,8;t)=G(P; Q; t) be a Green function defined in y=0, n<0
which, in addition to being of the form

G=r'+H(P;Qt), r= [(X-E)2+ (y-m)*+ (Z‘f)z]% P ()

where H is harmonic in the region of definition, satisfies the following
conditions:

Gy (P: E,0,8 1) +gGy= 0,

G, =0 for QeB,

G(P; &,0, ¢ 0)=0, (10)
GP;Q; -1) = G(P; Q; t):‘

G=O(R™%), Gg=0O(R®) if R oo,
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where R= [(x-g)2+(z-§)2]*, and

1@ 5+ @ &+ @ S

Such functions can be constructed for infinitely deep fluid and for the case
of a horizontal bottom at y=-h when the fluid is not bounded in any hori-
zontal direction [see, e.g.,, Wehausen and Laitone (1960), p.604], The
method of images allows easy extension to certain cases with vertical walls,
In all cases.

G(P;Q; t)=G(Q; P; t). (11)

Volterra's method for the problem at hand starts out by applying Green's
Theorem to the functions ¢,(x,y, z, 7) and G(P;Q; t-7) in the region bounded
by the free surface F, the body surface S, the bottom B, and a large
vertical cylinder Lz of radius R. One then makes use of the boundary
conditions satisfied by ¢ and G, lets R — <, and finally integrates with
respect to 7 from 0 to t. Since the details of the manipulations are easily
accessible [e.g., Stoker (1957), pp.192-196, or Wehausen and Laitone
(1{9;?), pp.604-606], we give here only the result. Define the operator
¥ by

Ligl=474(P, 1)+ [ $(Q,1)G,(P;Q;0)dS@Q)
v [far [f Q. 7IC (P Q@ t-T)AS(Q). (12)
° %

When we have need to display its variables, we shall write £ {¢ }(P,1).
Volterra's method leads to the following equations which must be satisfied
by ¢:

Ligi=474(P,0)+ [[ $(Q,0)G, (P;Q; t)ds
S
+ [lar [ %,(Q )G(P; Q; t-7)dS
° %
- [ [%(&,¢, 0)G(P; &, 0,£; 1)+ YG ] dE d¥. (13)
F

It is easy to verify that

Ligd=Z 218}~ [f $(Q0) Gy (P; Q1) aS
s
and hence that ¢, must satisfy

L14d= ff¥,(QNG(P; Qi 0)dS + [dr [ ¥,(Q TIG(P; Q; t-7)dS
s
fff [Y,(£,8,0)G(P; &, 0,8 1)+ YG ] dE dE. (14)
F ’

These, as well as equations which will appear later, can be made to yield
integral equations for a function defined only on S by letting P converge
to a point of the surface S. If we also call this point P, then the equations
above are modified only by having 47 replaced by 27, The solutions of these
integral equations and those to appear later are unique that is, the only
bounded solution of £ {#}=0 is ¢=0. This can be proved by a modification
of Volterra's original analysis and is shown in Appendix II. We shall suppose
solutions to exist for equations (13) and (14) as well as for the integral
equations to appear later. '
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The integral equations (13) and (14) hold for ¢ and @y as well as for
¢ and determine each from its initial values and the boundary conditions
to be satisfied on S, Hence ¢ satisfies exactly (13) if one replaces ¢ by
¢p and-Y by Yr and ¢y satisfies (13) with ¢ and Y replaced by $y and
Yy, respectively, and with the integral involving ¥, deleted. Since ¢y (P, 1)
is completely determined by dyw(P, o) and Pw,(x,0,2z,0) it may seem some-
what artificial to subdivide it further as in (5). However, this corresponds
to a customary way of looking at the fluid motion associated with the dis-
turbing force, It would be possible within the framework of the present
treatment toinclude the situation in which ¢1(P, t) is the result of specifically
given pressure distributions in the free surface and/or motions of other
bodies or boundaries in the absence of the body at S. By simply taking
$1(P,t) as known, we avoid any specific assumptions about its origin.

We now make a further decomposition of ¢y in which

e, 1 =6 (P, 0+ (P, 1), (15)

where

2 {3¥N =4 74P, o)+ [[ $:(Q, 0)G, (P, Q, 1)dS
)

- [[ Y5 (5,8, 0)G(P; &, 0,8 1) + Yp G,] dE X, (18)
F
£ 1601 = [far ff ¥,@Q MG(P; Q; t-1)as., (an
: s

¢(F°) evidently describes the motion resulting from that part of the distur-
bance present at t=0 which has been attributed to the forced motion, and
¢E) describes the fluid motion engendered by the body motion after t=0,
Thus, even though 95%1) satisfies

$M(P,0)=0, $(x,0,2,0)=0,
it also satisfies

$E (P, 1)| vy (P,1), >0,

5. Cummins' decomposition

Define the function ¢; to be the solution of
£{p3= [ n(QG(P; Qi 1)dS, i=1,...,6. (18)
s

The functions @; are evidently special cases of ¢(F1) where the fluid is initially
at rest and one velocity or angular-velocity component undergoes a unit
jump while the others remain zero. Hence ¢; satisfies the boundary condition

$ols=n; for t>0, (19)

Because of the discontinuity in v; at t=0, we may expect that $:(P; +0)#0.

This point and the equations for ¢;(P,+0) and ¢, (P,+0) are discussed in

Appendix I. That such a motion is incompatible with the assumed linearized

boundary conditions is irrelevant, for these are auxiliary functions to be

used only for the purpose described below and not to describe a real motion.
We now assert that ¢(F1) can be decomposed as follows:

¢ (p; 1) - 5 ft&i(r) $;(P, t-7)dT. (20)

i=l "o
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In fact, by direct substitution followed by a change of variables in the third
integral in the definition of £, one finds that

£ {2%1 jt () Bi (P, t-7)dr }

2 f (T { B} (P t-T)dT,
From the equation satisfied by ¢ this equals

g fot def (Q)G(P; Q; t-7)dS

i=1

= /‘ dr ffvn(Q, t)G(P; Q; t-T)dS.
° %

Hence (20) satisfies the integral equation (17). Since the solution of this
integral equation is unique, the assertion is correct. This is essentially
Cumming' decomposition (1962), as we shall see later on,

The force and moment acting upon the body which are a result of that
part of the fluid motion described by ¢%1) are given in linearized theory by

F, (t) = - pff ¢(1)(P t)n;(P)dS(P), i=l,...,86, (21)

where the force components are (F,,F;,F3), the moment components are
(F4,F5,Fg), and the n; are as before, The decomposition above yields
immediately

F, (t) = - ): [ak(t)p[j $, (P, +o)n ds
+ f d’To.fk(’T)Pff 8, (P, t-m)n,ds]. (22)
Let us define
p= [f By (Pr+o)ndS, Ly (t)= o [f $4 (P, H)n;dS. (23)
Then the e;uation for F; may be wristten
Ry - £ [Hadut s [y t-mandrl. (24)

The constants iy, which depend only upon the shape of the surface S, are
the "added masses', following Cummins' use of this term.

Cummins, in making his decomposition, introduced two functions, which
we shall call ¥ (P) and xx(P;t), instead of the one function ¢y. It is not
difficult to show that these functions may be identified with ¢, (P,+0) and
¢ . (P,t), respectively. For ¢, (P,+0) it is only necessary to show that

¢kn|$ =Ny and VS}((X; 0,z;0)=0, (25)

The former is already satisfied and we need to show only the latter. Consider
the equation satisfied by ¢, (P, +o):

47 (P, +o)+ [f $,(Q, +0)G ,(P; Q; 0)dS
S
= ff n; (Q)G(P; Q; 0)dS. 6
S
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Because of the symmetry of G in P and Q it follows from the third boundary
condition satisfied by G that

G(x,0,2;§,1m,§0)=0 (27)

for all g, n,¢. But then also

Gg(x,0,2;8,1,850)=Gy=Gy=0 (28)
and hence
Gy(%,0,2;8,1,8;0)=1n1Gg+ ny;Gyt ngGg= 0. (29)

Thus the equation for ¢k(P,+o) reduces for P=(x,0,z) to

(%, 0,2z;+0) = 0.
Consider next ¢, (P;t). It satisfies (see Appendix I) the equation

z {¢kti=£j‘ 1(QG (P, @; 1)dS - [f §,(Q, +0)G,y, (P, Q; ). (30)
The boundary conditions which Cummins imposes on yy are the following:

Ly (X2 0, 2, 1) + g% Ky = 0,

Ly (X,0,2,0)+ gt//ky(x, 0,z)=0,

Zials =0,

1 (P;0) =0, (31)
It is evident that the first two are satisfied with @, (P,t) as yxx and ¢, (P, +o)
as Yy because @y satisfies the free-surface condition, The third condition

follows from ¢y, s=ny since ny is independent of t. There remains the last
one. If we set t=0 in the equation for ¢,,, it reduces to

4 1dy (P, +0) +[[ 81, (Q, +0)G, (P; Q; 0)dS = 0, (32)
S

because G{(P; Q; 0)=0. ¢y (P,+0)=0 is obviously a solution. That this is the
only solution is shown in Appendix II. Thus VS}}; satisfies all the conditions
imposed by Cummins upon xy.

Cummins' formulas for ¢ and F; differ from those given above in only
inessential ways. Instead of starting with initial data at t=0, he starts from
a state of rest at t=-ew, Hence his integrals extend from - to t instead
of from 0 to t, In addition, he has integrated once by parts. The analogous
formulas in the present setting are

6
BE (P, 1) = L [&(08(P, +0) - &5(0) (P, 1)
+ [ a(nby (P, t-m)ar ],
6
Fi)=- 151 [Uik&k(t) = Ly (D) (0)

+ f: Ly (t-7)éy (T)d7]. (33)
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For a steady oscillatory motion it is well known that F,(t) can be ex-
pressed in the form

6
Fi(0)=~ I [#u(0)dk(t)+ Xy (0)d (D], (34)

where o is the frequency of oscillation, and where as can be easily proved,
Mik=Hkis, Aik=Aki. The same argument shows that uj; as defined in (23) is
also symmetric, This argument is not directly applicable to L (t) because
of the time derivatives in the free-surface boundary condition, However,
it is still possible to derive the symmetry of L, (and uj) by a modification
of this argument, Consider again the region of fluid bounded S, F, B and
Lg. If we make use of the fact that gy, =0 on B and that ¢y=O(R"?) as
R—w, as follows from equation (18), then from Green's Theorem applied
to the region under consideration we have, with the space variables sup-
pressed,

o=£f [B1(T)B 50 (t-7) = b1n (T)B4(t-7)] dS
+ { [ [Bu(m)By (t=7) = 81 (1) (t-7)] dS
=[f (6, (T)n; - ;(t-7)n, ] dS
S

+é‘£f 57 [Ny (1-7) + b (midy(t-7)] .

In writing the second equation use has been made of the boundary conditions
on S and on the free surface, If we now integrate with respect to 7 from
0 to t and recall that ¢(x,o0,z,0)=0 and ¢ (x,y,2,0)=0, we find

o=‘{;t dT_S[f [8,(T)n; - ¢, (t-T)n,JdS.

In the second term we make the change of variables 7'=t-7, This gives

f: ar [[ ¢ (rmyds=[  dr [f g,(r')n,as.
S S

After differentiating and multiplying by p, we find

p{f ¢k(t)nidS=p.£f 8,(t)n,ds. (35)
With t=0, this asserts that
Mig= Myge (36)
Taking another derivative with respect to t, we have
Ligg (1) = Loy (1), (37)
The expression for Fi(t) in (34) does not include the force acting on the
body as & result of the fluid motion associated with 955:"). This can not be

further decomposed or simplified, It vanishes, however, if there is no
forced-motion disturbance at t=0. We shall write

FO (1) =-p [ 69(P, t)n,ds. (38)
' S
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6. The Haskind velations

Let us next consider @y (P,t). According to (5), ¢w may be further de-
composed into a sum of a 'known' function ¢; and an unknown one ¢p,
although it is in fact determined by the integral equation for @y . The es~
sence of the Haskind relations is that in the computations of the force and
moment one may avoid solving for the diffracted wave provided one already
knows the forced~wave potential, This result was established by Haskind
(1957) for -steady periodic motion, We derive here a similar result by
applying Volterra's ideas,

We shall again use the facts that @i(s =n; i=1,...,6, @u|s =0, and
$;=O(R"?) as R—w, Consider now the volume of fluid bounded by S, F,
B and Zr, where these have the same significance as before, Since both
¢; and ép; are harmonic in this volume, Green's Theorem gives the fol-
lowing: '

[¢'D|:(P’T)¢in(P' t=7) = $ g $1JdS

0= {
S+F+B+IR

= ff ¢'Dt(P"T)nids -£f ¢'Dr.n (P’T)¢1(PJ t-7)dS
S
+ [[[$ouPa )by (P t-7) -4, 6] S
E
+ [[[Bp(PaT) (P t-7) -4, ¢ ]dS. (39)
IR

As R — o, the integral over Ly vanishes because of the conditions satisfied
by ¢p and ¢;. Next we make use of the free-surface condition in the integral
over F. This integral can be recast as follows:

) é F./.[sé'Dt(P‘ T)¢itt (P, t-7) - ¢Dttt ¢i]dﬁd§

) é{f 53? [#5.(Ps )8, (P, t-7) + 4, 4. ]dEat.

Integrate the equation (39) from 0 to t with respect to 7:

- [far ff 5P, TIndS = - [2a7 [[ 85 (P 7I$(P, t-)aS
° s S
+ ég [65,(P, )8, (P, +0) + by (P, 1), (P, +0)] d& dt

-3 { [ [8p,(P, 0) . (P, 1) + 81, (P, 0}, (P, )] dg af. (40)

Since, as shown earlier, ¢y (P,+0)=0 for all P and ¢;(P,+0)=0 for P¢F,
the second term on the right vanishes. Having established this, we now
differentiate (40) with respect to t:

- {f Bp,(P, t)n,ds = - _S[f bp. (P, 1)4, (P, +0)dS
-Lth{f Bp (PsT)B, (P, t-7)dS

- é f [¢Dt(P, O)¢itt (P, )+ 65, (P, 0)6 (P, t)] dg d¥t. (41)
F



10 John V, Wehausen

In the integrals over S we may replace ¢, by the known function -@p, .
In the integral over F,

¢Dt(PJ O) = ¢t(Pl O) - ¢It (Pa O)a ¢Dtt (P’ O) = ¢tt(P! O) - ¢Itt (Pa O), (42)

so that these may be considered as known functions.
The expression for that part of the force and moment associated with
the incoming and diffracted wave may now be put in the following form:

F,;()=-0 [ 4,(P, thny(P)dS
S
=-p [[ Br(P. 085, (P, +0) - b1y (P, 1)$5(P, +0)] dS
)
+p [1ar [[ $1a(P, T)$y (P, t-7)dS
)

- £ [ 85 (P: 0181 {PL 1) + By (P, 0} (P, V]S,
) i=1,...,6. (43)

This is the analogue of the Haskind relations.

7. The hydrostatic vestoving fovce and moment

The relation of this part of the force and moment with the geometry
of the body is well known. The formulas are reproduced for convenience
and completeness., We introduce the following designations:

v = volume bounded by S and the waterplane,
(xg,yp,2p) = center of buoyancy of V,
W waterplane area bounded by S,

(%¢» 0,2¢), = centroid of W,

WDyx = moment of inertia of W about (y, z)-plane,

WDZ, = moment of inertia of W about (%, y)-plane,

WD%, = product of inertia of W about (x,y)- and (y,z)-planes,
0 0 0 0 0 0
0 -W 0 Wz, 0 -Wx,

_ 0 0 0 0 0 0

(cik )=-pg 0 WZC 0 - [WDEZ +VyB] 0 WD)Z(Z (44)
0 0 0 0 0 0
0 -Wx, O WDZ, 0 -[WDZ +Vy,]

The components of the hydrostatic restoring force and moment can now be
written as follows

6
Frs; = - k§1cikak(t)+ pgVéig -pgVzgbiy + pgVxpdis » (45)
where the symbol 6;, has its usual significance.

8. The equations of motion

Let m be the mass of the body and let I, Iy, oo Tiys Tyss Dux be its
moments and products of inertia according to the usual éefinltions. Define
the matrix (mj;) as follows:
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m 0 0 O 0 0
0 m 0 O 0 0
|/ 0 0 m O 0 0
M= 0 0 0 I, Iy I (46)
0 0 0 Iy I, -I,
0 0 0 -Iy Iy I
The linearized equations of motion may be written in the form
mlk&k(t)=F£0)+Fl +FWi +FHSi > i=1,...,6. (47)
The usual conditions of hydrostatic equilibrium,
m'—‘,OgV, XB=ZB =0, (48)

are obtained when @y=0 and no surface waves are present. Making use of
this and introducing the forms derived earlier for F; and Fyg;, we find

- t .
(0 g+ p @R (8) + e @e(8) + [ Lig (b=7)éy (T)d7

=P (t)+Fy; (1), i=1,...,6. (49)

This set of integro-differential equations for ay(t), with initial conditions
ay (o) and ¢,(0), together with the integral equations for @y(P;t), the initial
motion of the fluid, ¢(P;o0) and ¢(P;0), and the given incoming-wave
potential @(P,t), determine uniquely the behavior of both body and fluid
at later instants of time. Note that the coefficients uj, cik and the kernel
L ik depend only upon geometrical properties of the body and not upon the

motion itself, This is, of course, the great virtue of Cumminsg' decom=~
position, No attempt at further analysis of (49) will be made here,

APPENDIX I

Consider a motion for which
v, (P, t)=a(t)n; (A.1)

for some i, 1=i=6, and let &(t) be a function of the form shown below.

aft)

|

——
.

i
|
|
£ t

The associated velocity potential ¢(1) will be denoted by ¢(‘ . It satisfies
the integral equation

¢(€) deaT)ff {(Q)G(P; Q; t-7)dS.
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For tZe, the right-hand side hecomes
£
-jodTa fj G(P; Q; t-7)dS

- Jf pQO@; s s

* fo dr &(1) [ n{(Q)G,(P; Q; t-7)dS

S

As € —0, the integral equation approaches

¢1Ptffn1 G(P; Q; t)ds, | (4.2)

The integral equatlon for ¢y must be found directly from (A.2) because
of the discontinuous behavior at t=0,
It is

ff +(P; Q; 1)dS - ff¢ (Q, 0)G ,,(P; Q; 1)dS. (A. 3)

If one now lets t — +o, the equations for §,(P,+o) and ¢, (P, +o) become,
respectively, «

474,(P, +o)+ [[ 4,(Q,+0)G,(P; Q; 0)dS
) .

{f n;(Q)G(P; Q; 0)ds, (A. 4)
ang (P, +o)+ [ 4,(Q,+0)G, (P;Q; 0)ds=0, (A.5)
[

It is shown in Appendix II that the solutions are unique, In particular, it
follows that ¢, (P, +0)=0.

APPENDIX II

In order to see that
¢kt (P; +0)=0 (A. 8)

is the unique solution of the equation (A,5) for ¢,,(P;+0), consider any
arbitrary solution and define

P)= [ $1(Qi+0)G, (P;Q; 0)as. A.7)

The function U is defined both inside and outside S and is harmonic, It
follows from equation (26) above that

U(x, 0, z)=0, ' (A.8)
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Let P converge to a point of S from the inside. Then from a well-known
property of such integrals '

lim U(P,.)=278,(P,+0)+ [[ 4., (Q, 0)G, (P; Q; 0)dS. (A.9)
S

Pint”PES

Next, in the equation (A.5) satisfied by @, (P,+0) for P exterior to S let
P converge to a point of S from the outside. This yields

278, (P, +0)+ [[ 8. (Q,+0)G, (P; Q; 0)dS=0. (A.10)
S
Hence
 lim U(Py,)EU,, (P)=0. (A.11)
Pi.nt"Pes

It now follows that U=0 in the interior region bounded by S and F (or by
S alone if the body is completely submerged); one may, for example, derive
this from Green's Theorem: '

[[ftgrad U)2av= [[ UU_ds. , (A.12)
v S+F ‘

Since U=0 inside S, then also U,|s =0 inside S. But then, since @, (P, +o)
is continuous, U, is continuous across S [see, e.g., Kellogg (1929), p. 170,
Th.X]. Hence Uy|s =0 outside S. Since G ,|q.3=0, then also G, |p,s =0 for all
Q. From this follows

Gpg=Gpy=Gp=0 for PeB ' (A.13)
and hence
-G, =0 for PeB, QeS. (A. 14)

We thus deduce that

Ualsp = 0. (A. 15)
Further, ‘
U=OR™2) if R-ow (A. 16)

from the assumed behavior of G, We may now once again apply the Green
Theorem above to conclude that U=0 outside S, i.e., in the region of fluid,
But now it follows from the equation for ¢, (P, +0) that ¢y (P, +0)=0, as we
wished to show, It follows immediately that the solution to (A.4) is.unique
since the difference of two solutions would satisfy (A.5).

Next we wish to show that

£ {8} (P,1)=0 (A.17)
implies that
#(P, 1) = 0, (A.18)

Define now
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UP, 1) = [ 4@, )G, (P; Q; 0)ds
S
+j:d'r H #(Q, )G, (P; Q; t-7)ds. (A.19)
S

The proof above shows that U(P,0)=0 if £ {4} (P, 0)=0.
Since U(P, t) is defined inside S, we may, as above, find for a point PeS

lim  U(B, ,1)=27$(P,t)+U(P, 1. (A.20)
P]Il -+P
On the other hand, from £ {4} (P, t)=0 follows, by taking the limit from the
exterior,

27 d(P,1)+U(P,1)=0. (A.21)
Hence

lim U( ,t) = U (P,t)=0, PeS, (A.22)

P. P

mnt

and then also

8

5t U (P2 1) =0, PeS. (A.23)

Consider now the boundary y=0. It follows from (5a) and (6) that
G (x,0,2;Q; t)+gGyE DG(x,0,2;Q;t)=0 (A. 24)
and thence that
DG,=DG, =0 on y=0. (A.25)
We wish to show that also
DU=0 on y=0. (A.286)

One finds, using G, (%, 0, 2;Q, 0)=G,(x, 0,2; Q; 0)=0,
U, = [f 4@Q. )G, (P;Q;0)dS
s
t
+ jo dr _[S'f $(Q,7)G, , (P;Q; t-7)dS
and hence

DU(P, 1)| ;= JI4Q.0[G, (P:Q o) +gG, ] a8
S

+ [lar fsf Q.G (Ps Qs t-7) 1G] _ S,

, Which is zero from (A.25).
Consider next the volume V bounded by S and F and define
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-1 2 L 2
E,_ (1=} ffj |vul®dv+ 2gﬂ U’ das. (A.27)
v F
Then, where n is the normal pointing into the region,

() = jj’[ vU- VU dV+—ff U, U, ds

= -'[;J' UtUndS+'£f Ut[Uy+—g-Utt ds.

lﬂt

The first integral vanishes because of (A.23), the second because of (A, 26).
Hence

Ejn(t)=E;(0)=0, (A.28)
because U(P,0)=0. Now it follows from (A.27) and (A.28) that

vU=U,=0,
Since U(P,0)=0, then

U(P,t)=0 inside S. (A.29)

Just as for t=0, we may conclude from (A.28) that U | =0 on the inside
of S and hence also on the outside,

Consider next the volume bounded by S, ¥, B and L. The reasoning
leading to (A.15) and (A.186) holds also for U(P,t). Define

B, (t)=%f"[;f (VU)2+§1§_£.( uZ gs. (A. 30)
Then,
- (t)—f_[' U UndS+ﬂ (U +— tt)ds
+ [f uUgas.

IR

The integral over S vanishes because U,=0, that over F because of (A.26),
and the last one vanishes as R— o, Hence,

E e (1) = ¢y (0) =0, (8.31)
As above, we conclude again that

UP,t)=0 outside S. (A. 32)
It now follows immediately from

L {dY (P,t) =4 7d(P,t)+U(P,t)=0
that

#(P, t) = 0. (A. 33)
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APPENDIX III

It has been mentioned earlier that uniqueness of solution of the various
integral equations follows from a slight modification of Volterra's original
argument, The question of existence of solution can be reduced to the same
question for a Fredholm integral equation of the second kind,

In order to see this, we introduce the following Laplace transforms:

3(P,s)=s jo"e'“ #(P, t)dt

= (P, +o)+ [ e™ §,(P, tydt

= §(P, )+ T $,(P,+0)+ £ [T ¢ (P, t)at, (A. 34)
% (Ps)=s [T v, (B, bat, (A.35)
G(P;Qss) =5 [Te™ G(P; Q: dt. (4. 36)

It is straightforward to confirm that the integral equations for ¢ and ¢y
take the following forms after transformation:

473(e,5)+ [ Q. )G, (P Qi )ds
= 474(P,0)+ [f $(Q, 00, (P Qs 5)ds
+ ,gf [V, (Q,9) - v, (Q, 9)] G(P; Q; s)ds
- [J (8. 500 s¥(5, 8, 0)] &(P; g, 0, & 5)dE dt, (A. 37)

47 8(P,s)+ [ 4,(Q 5)G,(P; Qi 8)dS = J[ ny(Q)G(P; Q; s)ds. (A. 38)
S S

The integral equations for the Laplace transforms of the other potential
functions which have been introduced can be deduced immediately from the
first one above,

The function G(P;Q;s) has the same structure as G(P;Q;t), i.e.,

&@:Qis)= 1+ (P Qs s) (A. 39)

where H is harmonic in the region y <0. Hence, if one lets P converge
to a point of the surface S, the 4r's above are replaced by 27's and the
equations appear to be typical of those occurring in Neumann problems in
potential theory, This is not the case, however, for the surface S is not
necessarily closed and the condition satisfied by G on the free surface,

s2G(x, ¥, Z;E.o,§;5)+g€in=0 - (A.40)
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does not allow reflection of the lower half-space into the upper one. Hence,
one must deal directly with the integral equations (A.37) or (A, 38). In the
case of steady harmonic oscillation, in which the sign of the first term in
(A.40) is changed, Fritz John (1951), has been able to prove existence of
a solution for a similar equation under certain conditions, so that it seems
reasonable to be hopeful in the present case.
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