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1. Introduct ion 

We shall consider a body moving on or beneath the free surface of a 
heavy inviscid fluid. The initial position and velocity of both fluid and body 
are assumed to be known, and we further allow the possible presence of 
'known waves' which may diffract upon the body and also cause it to move 
if its motion is not constrained. The motion of the fluid at the initial instant 
will be assumed to be irrotational. Hence it remains so. The body is sup- 
posed to have zero average velocity in both translation and rotation and 
its motions are assumed small enough so that the boundary conditions to 
be satisfied on the body can be linearized and satisfied at its equilibrium 
position. Concomitant with this, we assume that the boundary conditions 
on the free surface can also be linearized. We shall be concerned with 
various aspects of the motion after the initial instant. 

The method of analysis which is used was introduced by Volterra (1934), 
has been carried further by Finkelstein (1957), and is expounded in both 
Stoker's Water  waves  (1957, pp. 187-196) and in Wehausen and Laitone's 
Gravi ty  waves  (1960, pp. 603-607). The novelty here consists in certain 
decompositions of the velocity potential which allow one to derive Cummin's 
(1962) results for the initial-value problem with no waves present by what 
seems to the author to be a more direct approach and at the same time 
to find analogues for unsteady motion of the Haskind relations (1957; see 
also Newman, 1962)between the force and moment acting on the body as- 
sociated with diffracted waves and with forced waves. 

In the last section the various forces and moments acting on the body 
are put together in the equations of motion for the (small) translational 
and rotational motions of the body. These take the form of six coupled 
integro-differential equations. Certain coefficients and kernels occurring 
in these equations require prior solution of integral equations in which the 
shape of the body but not its motion is involved. This is one of the advantages 
of linearization. The solution of the equations themselves is not considered 
here. We mention, however, that Ursell (1964)has treated the initial-value 
problem for a half-immersed circular cylinder in still water, but by a quite 
different method from that used here. Earlier, Sretenskii (1937) had derived 
an integro-differential equation for a special case of the present problem 
and solved it numerically for a particular body. 

The integral equations mentioned above are discussed in Appendix III, 
where it is shown that they can be reduced to Fredholm integral equations. 
No attempt is made to establish the existence of a solution. Uniqueness of 
solution follows easily from an extension of Volterra's original treatment 
of this problem. 

Some of the results, for example, the Cummins decomposition, can be 
extended to allow the body to have a constant translational velocity. This 
has recently been done by Wen-Chin Lin [Ph.D. dissertation, University 
of California, Berkeley, 1966]. 

2. Mathemat ica l  f o r m u l a t i o n  

Let Oxyz be an inertial right-handed coordinate system with Oy directed 
oppositely to gravity and with Oxz lying in the plane of the undisturbed free 
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s u r f a c e .  L e t  ()~2~ be a s y s t e m  f ixed  in the b o d y  and c o i n c i d i n g  wi th  Oxyz 
when the body  is at  r e s t  in i t s  e q u i l i b r i u m  p o s i t i o n .  Th en ,  i f  e x c u r s i o n s  
of the body  f r o m  i ts  e q u i l i b r i u m  p o s i t i o n  a r e  ' s m a l l ' ,  and if  one d i s c a r d s  
t e r m s  h i g h e r  than  f i r s t  o r d e r  in the e x c u r s i o n s ,  the two s y s t e m s  a r e  
r e l a t e d  by  the fo l l owing  equa t ion :  

(x, y, z)=(~, y, 3) + (x l ( t ) ,  y l ( t ) ,  z l ( t ) )  + (a(t),  ~(t) ,  7(t))x(~,  y, ~) 

=(X, y, 3) + ( x >  Yl,  z l )  + (~, ~, 7) • (x, y, z) ( la )  

which  we m a y  a l so  w r i t e  in the fo l lowing  f o r m :  

3 
r = f +  C [~k(t)_ek§ X r ] ,  ( lb)  

k=l 

w h e r e  e l ,  e_2,e_a , a r e  the uni t  v e c t o r s  in the d i r e c t i o n s  Ox, Oy, Oz, r e s -  
p e c t i v e l y ,  and 

OQ=X 1, a 2 = Y l ,  a 3 = Z  1, o~4=Oe , a 5 = ~  , Ot6=T. 

H e r e  (Xl, Yl, z l )  d e s c r i b e s  the t r a n s l a t i o n a l  d i s p l a c e m e n t s  and (a, ~, T) 
the a n g u l a r  ones .  H e n c e f o r t h  we sha l l  not  n eed  the c o o r d i n a t e  s y s t e m  
o~ye .  

T h e  m o t i o n  of the f lu id  m a y  be d e s c r i b e d  by  m e a n s  of a v e l o c i t y  p o t e n t i a l  
r y, z, t). The  l i n e a r i z e d  b o u n d a r y  cond i t i ons  wh ich  i t  m u s t  s a t i s f y  a r e  
the fo l lowing:  

Ctt (X, O, Z, t) + g~y = 0, (2a) 

3 
Cnls = Vn(X, Y, z, t) = E [&k(t)n-.ek+ak+3 (t) ( r  • n ) .  ek] 

k=l 

6 
= E ak( t )nk,  (2b) 

k;1 

whe re  
B the 
out  of 

CnlB = 0, (2e) 

S is the wetted surface of the body in its equilibrium position and 
bottom. We shall always take the normal vector n_ to be pointing 
the fluid. The components n4, n5, ne are defined by 

nk= (r  xn)  �9 ek_3, k = 4 , 5 ,  6. 

i f  the fluid is infinitely deep ,  the last condition is replaced by 

l i m  ~y= O. (2d) 

In addition, we require that r ct, grad r be bounded in the region oc- 
cupied by  f lu id .  

We shall further suppose that ~(x, y, z, o) and ~t(x, o, z, o) are known~ 
Y(x,z,t), the free surface elevation, is given in linearized theory by 

1 
Y ( x ,  z ,  t) : - =  Ct(x, o, z , t ) ,  (3) 

and Yt (x, z, t) by  

Yt (x, z, s = 95y(X, O, z, s 
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3. A preliminary decomposition 

We shall attempt to separate the velocity potential r t) into two parts, 
a 'forced-wave' potential CF, representing the waves caused by the motion 
of the floating body, and a 'free-wave' potential Cw representing the wave 
motion which would take place if the body were not moving. In order to 
describe Cw we must know an 'incoming-wave' potential el(P, t). This might 
be, typically, plane sinusoidal travelling, or standing, waves of given 
length, but could also be a more complex sea representable by a Fourier 
integral or generalized Fourier series in plane-wave potentials of variable 
direction and wave length. The important point is that r should be 
known for t~0. Associated with r will be another function CD(P,t), the 
'diffracted-wave' potential, which must satisfy the boundary condition 

CDn( P, t)ls = -r (P' t)ls �9 (4) 

We now define Cw by 

Cw = r + CD" (5) 

Evidently 

C w n ( P , t ) l  s = 0, t >_- o. (6) 

Since we wish to have 

r = r + %, 

CF must sa t i s fy  

(7) 

C F n ( P , t ) I s = V  n,  t>_-- 0. (8) 

All functions r CD and CF must ,  of c o u r s e ,  s a t i s fy  condit ion ( 2 a ) a n d  
(2e) and be hounded. 

We shall  suppose  that at t ime t=0 we know CF (x, y, z, o), eFt (x, O, z, O), 
CD(x ,y ,z ,  O), and CDt(X,O, z , o ) .  Hence,  we a lso  know YF (x, z ,o) ,  YFt (x, z, o), 
Yw (x, z, o) and Ywt (x, z, o); where  these  are  de te rmined  accord ing  to (3) 
f rom the c o r r e s p o n d i n g  ve loc i ty  potent ial .  

4. Volterrars method 

Let G(x, y, z; ~, ~,~; t)=G(P; Q; t) be a Green function defined in y <- 0, 
which, in addition to being of the form 

G = r -1 +H(P;Q;t ) ,  r = [(x-~)2+ (y_~)2+ ( z_~)2 ]}  

where H is harmonic in the 
conditions: 

Gtt (P; ~, o, ~; t) +gG~= 0, 

G v = 0 for Q c B, 

G(P; ~, o, ~; o) = O, 

G(P;Q;  -t) = G(P; Q; t), 

G =O(R-2), GR=O(R-3) 

region of definition, 

if R ---~r 

~ < 0  

(9) 

satisfies the following 

(io) 
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where R" [(x-~) 2 + (z-~) 2] �89 , and 

a a 
~'~ = nl(Q) ~-~ § ng(Q ) + n3(Q ) ~-~ 

Such funct ions  can be cons t ruc t ed  fo r  inf in i te ly  deep fluid and fo r  the case  
of a ho r i zon ta l  bo t tom at y=-h when the fluid is not bounded in any h o r i -  
zontal  d i r ec t ion  [ see ,  e . g . ,  Wehausen  and Lai tone  (1960), p. 604].  The 
me thod  of i m a g e s  a l lows  easy  ex tens ion  to c e r t a i n  c a se s  with v e r t i c a l  wal ls .  
In all  c a se s ,  

G(P; Q; t) = G(Q; P; t). (11) 

Volterra's method for the problem at hand starts out by applying Green's 
Theorem to the functions r y, z, ~') and G(P; Q; t-v) in the region bounded 
by the free surface F, the body surface S, the bottom B, and a large 
vertical cylinder ER of radius R. One then makes use of the boundary 
conditions satisfied by ~ and G, lets R ...r and finally integrates with 
respect to v from 0 to t. Since the details of the manipulations are easily 
accessible [e.g., Stoker (1957), pp. 192-196, or Wehausen and Laitone 
(1960)0 pp. 604-606], we give here only the result. Define the operator 
-f{r by 

Z {4t--4 ~r 4 (P, t) + fl 4(Q, t )Gv(P,Q;  o)dS(Q) 

+ fotdr ff 4(Q, ~')G~t (P; Q; t-~')dS(Q ). (12) 
$ 

When we have need to d i sp lay  i ts  va r i ab l e s ,  we shal l  wr i t e  Z { r  
V o l t e r r a ' s  m e t h o d  leads  to the fol lowing equat ions  which m u s t  be sa t i s f i ed  
by 4: 

I4t-- 41r 4 (P, o) + f f 4(Q, o)G~(P;Q; t)dS 
$ 

+ fo s <(Q.,-)cm; Q; t-,IdS 
" f [  [Yt(~. [ .  o)G(P; ~,, o. [ ;  t )+YGt]  d~ d[. (13) 

F 
It is easy to verify that 

{r = ~ s  4(Q,~ Gv t (P ;Q; t )  dS 
$ 

and hence  that  4t m u s t  sa t i s fy  

$ 

- II [Yt(~' ~~ ~ ~' o, {; t)+YGt~ d~ d{. (14) 
F 

These, as well as equations which will appear later, can be made to yield 
integral equations for a function defined only on S by letting P converge 
to a point of the surface S. If we also call this point P, then the equations 
above are modified only by having 4~ replaced by 27r. The solutions of these 
integral equations and those to appear later are unique that is, the only 
bounded solution of .{ {4~=0 is 4=0. This can be proved by a modification 
of Volterra's original analysis and is shown in Appendix If. We shall suppose 
solutions to exist for equations (13) and (14) as well as for the integral 
equations to appear later. 
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The integral equations (13) and (14) hold for ~F and ~w as well as for 
and determine each from its initial values and the boundary conditions 

to be satisfied on S. Hence 4F satisfies exactly (13)if one replaces r by 
4F and Y by YF and r satisfies (18) with ~ and Y replaced by ~w and 
Yw, respectively, and with the integral involving ~, deleted. Since 4w (P, t) 
is completely determined by Cw(P, o) and 4wt(x, o, z, o) it may seem some- 
what artificial to subdivide it further as in (5). However, this corresponds 
to a customary way of looking at the fluid motion associated with the dis- 
turbing force. It would be possible within the framework of the present 
treatment toinclude the situation in which  41(P, t) is the result of specifically 
given pressure distributions in the free surface and/or motions of other 
bodies or boundaries in the absence of the body at S. By simply taking 
41(P,t) as known, we avoid any specific assumptions about its origin. 

We now make a further decomposition of 4F in which 

4F(P, t) = 4 (~ (P, t)+ 4 (1) (P, t), (15) 

where 

s {4 (~ = 4 Ir4F(P, o) +ff 4F(Q, o)G,(P, Q, t)dS 
8 

- f J  [ Y ~ t ( ~ , ~ , o ) G ( P ; ~ , o , ~ ; t ) + Y F G t ] d ~ d ~ ,  (16) 

Z {40)I = fotd~ " ff "b,(Q, ~')G(P;Q; t-~')dS. (17) 
s 

4(F ~ evidently describes the motion resulting from that part of the distur- 
bance present at t=0 which has been attributed to the forced motion, and 
4~ i) describes the fluid motion engendered by the body motion after t=0. 
Thus, even though 4( I ) satisfies 

4(F1)(P,~ :0, r~(1) (x, o, z, o) = O , F t  

it also satisfies 

4  (e,t)l =v.(P,t), t >0. 

5. Cumminst decomposition 

Define the function 4i to be the solution of 

]- 14i} = ff ni(Q)G(P;Q; t)dS, i=1 ..... 6. (18) 
8 

The functions 4i are evidently special cases of 4 (I) where the fluid is initially 
at rest and one velocity or angular-velocity component undergoes a unit 
jump while the others remain zero. Hence 4i satisfies the boundary condition 

4inls=ni for t >0. (19) 

Because of the discontinuity in v a at t=0, we may expect that 4i(P; +o)~0. 
This point and the equations for 4i(P, +o) and 4it(P,+o) are discussed in 
Appendix I. That such a motion is incompatible with the assumed linearized 
boundary conditions is irrelevant, for these are auxiliary functions to be 
used only for the purpose described below and not to describe a real motion. 

We now assert that 4(F I) can be decomposed as follows: 

6 t.. 
4 (I) (P; t) = Z fo ai('r) 4 i ( P '  t-'r)d-r. (20) 

i;I 
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In fact, by direct substitution followed by a change of variables in the third 
integral in the definition of Z, one finds that 

i=l 
6 t 

i=l "o 

F r o m  the equation satisfied by r this equals 

6 t 
s ~i(T)dT // ni(Q)G(P; Q; t - , )dS 

i=l S 
= --ftd~- f / %  (Q, t)O(P; Q; t-T)dS. 

" 0  
s 

Hence (20) satisfies the integral equation (17). Since the solution of this 
integral equation is unique, the assertion is correct. This is essentially 
Cummins' decomposition (1962), as we shall see later on. 

The force and moment acting upon the body which are a result of that 
part of the fluid motion described by ~(I) are given in linearized theory by 

Fi(t  ) = -p// 6(DfP, t)ni(P)dS(P), i=I, 6, (21) r F t  x "''' 

s 

where the force components are (FI,Fz,F3) , the moment components are 
(F4,Fs,F6) , and the n i are as before. The decomposition above yields 
immediately 

6 
Fi (t) : - ~ [a k (t) 0 [j" ~k (P, +o)n~dS 

t s 

+ fo d'r ~k(~)p f/ Ckt (P' t-'r)nidS]" (22) 
S 

]bet us define 

~k-- {f ~k( P, +o)n~dS, L~k (t) = p [/ ~k~ (P, t)n~dS. (23) 
s s 

Then the equation for F i may be written 

6 t 

The constants ~ik, which depend only upon the shape of the surface S, are 
the "added masses", following Cummins' use of this term. 

Cummins, in making his decomposition, introduced two functions, which 
we shall cal} @k(P) and xk(P;t), instead of the one function ~k. It is not 
difficult to show thai these functions may be identified with ~k(P, +o) and 
~kt(P,t) ,  respect ive ly .  F o r  ~k(P,+o) it is only neces sa ry  to show that 

~knlS =nk and Ck(X, o, z, o) = O. (25) 

The former is already satisfied and we need to show only the latter. Consider 
the equation satisfied by Ck(P,+o): 

~ r +o/+ J'f Ck(q, +o)O~(P; Q; o)dS 
s 

= ff ni(Q)G(P; Q; o)dS. 
s 

(2s) 
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Because of the symmetry of G in P and Q it follows from the third boundary 
condition satisfied by G that 

G(x, o, z; ~ ,n ,  ~; o) = 0 (27) 

for al l  ~, r/, ~. But then  a l so  

G[(x, o, z; $, rl, ~ ; o) = G~= G[= O 

and hence  

(28) 

Gv(x, o, z; [, rl, ~; o) = niG~+ n2G~+ n3G~= 0. 

Thus the equation for Ck(P, +0) reduces for P=(x, o, z) to 

Ck(X, o, z; +o) = 0. 

C o n s i d e r  next  r  t). I t  s a t i s f i e s  (see  Appendix  I) the equa t ion  

(29) 

{r = f f  nk(Q)Gt(P,  Q; t)dS - f f  r +o)G~t (P, Q; t)dS. (30) 
s s 

The b o u n d a r y  cond i t ions  which  C u m m i n s  i m p o s e s  on Zk a re  the fol lowing:  

Zkt t (x ,  O, Z, t) + gXky = O, 

Xkt (X, O, z, O) + gCky(X , O, z) = 0, 

Z~I s  = O, 

Z k ( P ;  o) : O. (31) 

It is  ev iden t  tha t  the f i r s t  two a r e  s a t i s f i e d  wi th  ~kt(P,  t) as  Zk and ~k(P, +o) 
as ~k because ~k satisfies the free-surface condition. The third condition 
follows from ~knlS=nk since n k is independent of t. There remains the last 
one. If we set t=O in the equation for ~kt, it reduces to 

4 ~rCk t (F, +o) + I f  Ckt (Q, +o)G~ (P; Q; o)dS = 0, (32) 
s 

b e c a u s e  G t ( P ; Q ; o ) = 0 .  Ckt(P,+o)=0 is obv ious ly  a so lu t ion .  Tha t  th is  is the 
on ly  so lu t ion  is  shown in Appendix  II. Thus  Ckt s a t i s f i e s  a l l  the cond i t ions  
imposed by Cummins upon Zk. 

Cummins' formulas for r and Fi differ from those given above in only 
inessential ways. Instead of starting with initial data at t=0, he starts from 
a state of rest at t=-o0. Hence his integrals extend from -o0 to t instead 
of from 0 to t. In addition, he has integrated once by parts. The analogous 
formulas in the present setting are 

6 
r (p,  t) -- ~1 [~i( t )~i(P'  +o) -~ i (o )~  (p,  t) 

+ fo~ i (~ )A~  (P ,  t ~ ) d ~ ] ,  

6 
Fi (t) = - ~ [ ~ k ~ k ( t )  - L~k (t)&k(O) 

k=l 

+ f J  Lik (t-~')&k(~')d~']" (33) 
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F o r  a s teady osc i l l a to ry  motion it is well known that Fi(t  ) can be ex- 
p re s sed  in the form 

6 
F i(t) : - i~l [~ik((Y)~k(t) +~ik(ff)~k(t)]' (34) 

<vhere (; is the frequency of oscillation, and where as can be easily proved, 
~ik=12ki, lik=Iki. The same argument shows that Pik as defined in (23) is 
also symmetric. This argument is not directly applicable to Lik(t ) because 
of the time derivatives in the free-surface boundary condition. However, 
it is still possible to derive the symmetry of Lik (and ~ik) by a modification 
of this argument. Consider again the region of fluid bounded S, F, B and 
E R. If we make use of the fact that tkn=0 on B and that tk=O(R "2) as 
R--*~, as follows from equation (18), then from Green's Theorem applied 
to the region under consideration we have, with the space variables sup: 
pressed, 

o =/s f [r162 - r (r)~i(t-r)]dS 

+ f l  [~ k("r)r (t-'r) - ~ ky (T)r dS 

=fl [~k('r)ni - ~i(t-'r)nk] dS 
S 

! 
+ g (t-,) + dS. 

F 

In writing the second equation use has been made of the boundary conditions 
on S and on the free surface. If we now integrate with respect to "r from 
0 to t and recall that ~(x,o, z, o)=0 and ~kt(x,y, z, o)=0, we find 

O=fo t d'r f f  [~k('r)ni- ~i(t-'r)nk] dS. 

In the second term we make the change of variables "r'=t-'r. This gives 

I :  d'r g ~k('r)nidS= f :  dT' / I  ~i('r')nkdS. 
$ s 

After differentiating and multiplying by p, we find 

Pff  tk(t)ni dS = p f/ ~i(t)nk dS" 
s s 

With t=0, this asserts that 

]Jik = Mki" 

Taking another  derivat ive with respec t  to t, we have 

(35) 

(36) 

Lik (t) = Lki (t). (37) 

The expression for Fi(t) in (34) does not include the force acting on the 
body as a result of the fluid motion associated with ~%o). This can not be 
further decomposed or simplified. It vanishes, however, if there is no 
forced-motion disturbance at t=0. We shall write 

F~ ~ (t)= -p f [  ~ (F~)(P, t)nidS. (38) 
s 



The motion of a body in an undulating sea 9 

6. The Haskind relations 

Let  us next cons ide r  4w(P , t ) .  Accord ing  to (5), 4w m a y  be fu r t he r  de -  
composed  into a sum of a 'known' function 4! and an unknown one 4D, 
although it is in fact  d e t e r m i n e d  by the in tegra l  equation for  4w.  The e s -  
sence  of the Haskind re la t ions  is that  in the computa t ions  of the fo rce  and 
m o m e n t  one m a y  avoid solving for  the d i f f rac ted  wave provided one a l r e a d y  
knows the fo r ced -wave  potent ial .  This  r e su l t  w a s  es tab l i shed  by Haskind 
(1957) for  s t e a d y  per iod ic  motion.  We der ive  h e r e  a s i m i l a r  r e su l t  by 
applying V o l t e r r a ' s  ideas .  

We shal l  again use the facts  that 4inls=ni ,  i = 1 , . . . , 6 ,  4inlB=0, and 
4i=O(R "~) as !~---*o0. Cons ide r  now the volume of fluid bounded by S, F,  
B and DR, where  these  have the s ame  s igni f icance  as before .  Since both 
4i and 4Dr a r e  ha rmon ic  in this volume,  G r e e n ' s  T h e o r e m  gives the fol-  
lowing: 

oo f/ [4~P,v)r162 t-v)-4~n 4~]dS 
S+F+B+Z R 

; ff 4D~r ds -s 4D~.n (P,vl4iCP, t-~dS 
+ ff [4Dr(P, v )4iy r t-v)- 4D;y 4i] dS 

+ ~j'[4Dt(p, v/4~cp, t-vl-%tR 4JdS. (391 
ZR 

As R - - - ~ ,  the in tegra l  over  gR vanishes  because  of the condit ions sa t i s f ied  
by 4D and 4i. Next we make  use of the f r e e - s u r f a c e  condit ion in the in tegra l  
over  F.  This  in tegra l  can be r e c a s t  as follows: 

�89 f/[4DtcP, v)4itt (P, t-v1-4Dttt 4i]d~ d~ 
F 

1 8 
= ~ f f  ~'~ [4Dt(P, V)4it (P, t-v) + 4Dtt 4i ] d~ d~. 

F 

Integrate the equation (39) from 0 to t with respect to '7": 

-Jo  Z 
s $ 

1 f f  [4Dt(P ' t)4it (P, +~ 4Dtt r t)4iCP, +o)] d~ d~ 

_ 1 / / [ 4 D t ( P  ' o)4it (p,  t) + 4Dtt (P, o)4i(P, t)] dg d~. (40) g . 
F 

Since, as shown e a r l i e r ,  4it(P,+o)=0 for  all P and r  for  P e F ,  
the second t e r m  on the r ight  vanishes .  Having es tab l i shed  this,  we now 
d i f fe ren t ia te  (40) with r e s p e c t  to t: 

- f / 4 D t  (p '  t)nidS = - f f  4Din (P, t)4i(P, +o)dS 
s $ 

'7" ' - L tdT" Sf / 4Dtn ( p , ) g i t  (P'  t-v)dS 

1 gff [4Dt(P, o)4it t (P, t) + 4pit(P, o)4it(P, t)] d~ d~. (411 
P 
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In the i n t e g r a l s  o v e r  S we m a y  r e p l a c e  ~Dtn by  the known f u n c t i o n  -r 
In the i n t e g r a l  o v e r  F ,  

C D t ( P , o ) = r  r ~ i t ( P , o ) ,  C o t t ( P , ~ 1 6 2 1 7 6 1 6 2 1 7 6  (42) 

so that these may be considered as known functions. 
The expression for that part of the force and moment associated with 

the incoming and diffracted wave may now be put in the following form: 

Fwi (t) = - 0 fs f Cwt (P, t )ni (P)dS 

= - p f f  [ r  t)r (P,  +o) - elm (P,  t ) r  +o)] dS 
8 t 

+o fo f f  r162 t- )dS 
s 

_ f f  t)+ (v, o)r t)]dS, 
F 

i = l ,  .... 6. 

This is the analogue of the Haskind relations. 

(43) 

7. The hydros ta t ic  r e s t o r i n g  f o r c e  and m o m e n t  

The relation of this part of the force and moment with the geometry 
of the body is well known. The formulas are reproduced for convenience 
and completeness. We introduce the following designations: 

V = volume bounded by S and the waterplane, 
( x B , y  B , z B )  = c e n t e r  of b u o y a n c y  of V, 

W = w a t e r p l a n e  a r e a  bounded  by  S, 
(Xc, 0, z c) = c e n t r o i d  of W, 

WDxZx = m o m e n t  of i n e r t i a  of W about  (y, z ) -p l ane ,  
WDz2z = m o m e n t  of i n e r t i a  of W abou t  (x, y ) -p l ane ,  
WDx2z = p r o d u c t  of i n e r t i a  of W about  ( x , y ) -  and (y, z ) - p l a n e s ,  

I 
0 0 0 0 0 0 / 
0 -W 0 Wz c 0 -Wx c 
0 0 0 0 0 0 

(Cik)= - Pg (44) 
0 Wz c 0 -[WDzZz+VyB] 0 WDxZz 
0 0 0 0 0 0 
0 -Wx c 0 WDx2z 0 -[WDx2x+VYB]/ 

The components of the hydrostatic restoring force and moment can now be 
written as follows 

6 

FHS i = - E C i k a k  ( t )  + p g V 6 i 2  - p g V z B 6 i 4  + p g V x B 6  i6 , ( 4 5 )  
k=l 

where the symbol 5ik has its usual significance. 

8. The equations of  mot ion  

Let m be the mass of the body and let Ix, ly, I z, I x ,, Iyz, Izx be its 
moments and products of inertia according to the usual ~efimtions. Define 
the matrix (mij) as follows: 
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m 0 0 0 0 0 ~ /  
0 m 0 0 0 0 

(mij)= 0 0 m 0 0 o 
0 0 0 Ix -Ixy Ixz " 
0 0 0 Ixy Iy -Iy 
0 0 0 - I x z  Iy z I z / 

The linearized equations 

mikO}k(t)=F} ~ + F  i + 

of motion may be written in the form 

(46) 

Fwi +FHS i , i= l  . . . . .  6. (47) 

The usual conditions of hydrostatic equilibrium, 

are obtained when ~k=0 and no surface waves are present. 
this 

m=pgV, x B =z B =0, (48) 

Making  use  of 
and i n t r o d u c i n g  the f o r m s  d e r i v e d  e a r l i e r  f o r  F i and FHS i , we f ind 

(mik + gik )~k(t) + Cik Olk(t) + f :  Lik (t- 'r)~k('r)d'r 

= F} ~ (t) + Fwi (t), i= 1 . . . . .  6. (49) 

This set of integro-differential equations for ~k(t), with initial conditions 
ak(O) and ~k(O), together with the integral equations for ~k(P;t), the initial 
motion of the fluid, ~(P; o) and ~t(P; o), and the given incoming-wave 
potential ~I(P, t), determine uniquely the behavior of both body and fluid 
at later instants of time. Note that the coefficients ~ik, cik and the kernel 
Lik depend only upon geometrical properties of the body and not upon the 
motion itself. This is, of course, the great virtue of Cummins' decom- 
position. No attempt at further analysis of (49) will be made here. 

A P P E N D I X  I 

Consider a motion for which 

Vn (P, t)=&(t)ni 

for some i, i~i-<6, and 

(A. 1) 

l e t  ~(t) be a func t ion  of the f o r m  shown be low.  

6(t) 

I / I 
E t 

The associated velocity potential 4(I) will  be denoted by ~). 
the integral equation 

"if{~(')[-i ,= /otdT @(Tll/ ni(Q)G(P; Q; t -T)dS"  
s 

It satisfies 
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For t~e, the right-hand side becomes 

= /:d~" &r II niCQ)Gr Q; t,~')dS 
$ 

= fs I ni(Q)O(P; Q; t-e)dS 

+ f:d'r S('r) 5 ni(Q)Gt(P; Q; t-'rldS. 
s 

As ~--*0, the integral equation approaches 

s tr (P, t)--If ni(Q)G(P; Q; t)dS. (A. 2) 
s 

The integral  equation for r must be found direct ly from (A. 2) because 
of the discontinuous behavior at t=0. 

It is 

"~ {r = ff ni(Q)Gt(P; Q; t)dS - 5  r ~ Q; t)dS. 
s $ 

(A. 3) 

If one now lets t --* +o, the equations for el(P, +o) and r (P, +o) become, 
respectively,  

4 ~ i ( P ,  +o)+II el(Q, +o)G~(P; Q; o)dS 
s 

= f l  ni(Q)G(P; Q; o)dS, 
s 

(A. 4) 

4 ~'r (P' +o)+ If r Q, +o)G, (P; Q; o)dS=0. 
s 

(A. ~) 

It is shown in Appendix II that the solutions are unique. In particular,  it 
follows that r +o)=0. 

APPENDIX II 

In order to see that 

r kt (P; +o) = 0 

is the unique solution of the equation (A.5) for ~kt(P;+o), 
arbitrary solution and define 

(A. 6) 

consider any 

U(P) =II  Ckt (Q' +o)G~(P; Q; o)dS. (A. 7) 
s 

The function U is defined both inside and outside S and is harmonic. It 
follows from equation (26) above that 

U(x, o, z)=0. (A. 8) 
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Let P converge to a point of S from the inside. Then from a well-known 
property of such integrals 

lira U(Pin t)= 2 Ir # kt (P' +o) + fs f #kt (Q' ~ (P; Q; o)dS. 
Pint.* P ~ S 

(A. 9) 

Next, in the equation (A. 5) satisfied by ~kt (P,+o) for P e x t e r i o r  to S let  
P converge to a point of S from the outside. This yields 

2 Trek t (P, +o) +If ~kt (Q' +~ Q; o)dS=0. 
s 

(A. 1 O) 

Hence 

lim U(Pint)-=Uint(P)=0. (A. ii) 
Pint-bP es 

It now follows that U-=0 in the interior region bounded by S and F (or by 
S alone if the body is completely submerged); one may, for example, derive 
this from Green's Theorem: 

fit(grad U) 2 dV= If UUndS' (A. 12) 
V S+F 

Since U~0 inside S, then also Un[ s =0 inside S. But then, since ~kt(P,+o) 
is continuous, U n is continuous across S [see, e.g., Kellogg (1999), p. 170, 
Th.X]. Hence Unls =0 outside S. Since G yIQ~B=0, then also Gnlp~ B =0 for all 
Q. From this follows 

Gnu= Gnu= Gnu= 0 for P r B (A. 13) 

and hence 

Gnv=0 for PcB, Q~S. (A.14) 

We thus deduce that 

Ual B =0. 

Further, 

u = O(R -2 ) 

(A. 15) 

if R --~ ~ (A. 16) 

from the assumed behavior of G. We may now once again apply the Green 
Theorem above to conclude that U=0 outside S, i.e., in the region of fluid. 
But now it follows from the equation for ~kt(P,+o) that ~kt(P,+o)=0, as we 
wished to show. It follows immediately that the solution to (A. 4) is unique 
since the difference of two solutions would satisfy (A. 5). 

Next we wish to show that 

z {~} (P, t) = o (A. 17) 

implies that 

r t)  = O. (A. 18) 

Define now 
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U(P, t) = f f  r t)O~ (P; Q; o)dS 
s 

+ tot d'r ~ r "r)G~t (P; Q; t-~')dS. 
s 

(A. 19) 

The p r o o f  above shows  tha t  U(P ,o )=0  if s ~ }  (P,  o)=0. 
Since U(P,  t) is  de f ined  ins ide  S, we m a y ,  as  above,  f ind f o r  a point  PeS 

l i m  U(Pint , t) = 2 ~r r  t) +U(P ,  t). (A. 20) 
p. ...p 
mt 

On the other hand, from ~ { ~ } (P, t)=O follows, by taking the limit from the 
e x t e r i o r ,  

27r r  t) + U(P, t) = 0. (A. 21) 

Hence  

l i m  U(Pin t , t ) = U i n  t ( P , t ) = 0 ,  P e S ,  (A.22) 
Pint ~P 

and then also 

a 
0--~Uin t ( P , t ) = 0 ,  P ~ S .  (A.23) 

Consider now the boundarY y=O. It follows from (5a) and (6) that 

Gtt (x, o, z; Q; t) + gGy = DG(x, o, z; Q; t) = 0 

and thence  tha t  

(A. 24) 

DG, = DG ~t = 0 on y= 0. 

We wish  to show tha t  a l so  

(A. 25) 

DU = 0 on y=0. 

One f inds ,  u s i n g  Gut (x, o, z ; Q ,  o)=Gv(x, o, z; Q; o)=0, 

(A. 26) 

Utt : f f  ~(Q, t)G~t t (P; Q; o)dS 
s 

t 

+ j ' j d ~ ' J f  r ttt(P;q;t-~)dS 
s 

and hence 

" ' ( ' .  t)l.-o: J7 ~(Q, t)[~ Q: o)+ go ~y] ~:o dS 
s 

+ Jo ~ Z ~(Q.~) [~  (~: Q; ~ ~) +~~ ~ 
s 

which is zero from (A. 25). 
Consider next the volume V bounded by S and F and define 
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Eint (t) =�89 ivul2 dV+ ~ffl UtdS .2 
v s 

where n is the normal pointing into the region, 

, i  int(t)=fff VU dV+ f/ UtUt dS 
v F 

1 
= - ~ U tUnds+ ff U t [Uy+ ~ Utt ] dS. 

S F 
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(A. 27) 

Then, 

E int(t) = Eint (o) = 0, 

b e c a u s e  U ( P , o ) = 0 .  N o w  i t  f o l l o w s  f r o m  (A. 27) and  (A. 28) t h a t  

(A. 28) 

V U  = U t = O. 

S i n c e  U ( P ,  o)= O, t h e n  

U ( P ,  t) = 0 inside S. (A.  29) 

Just as for t=0, we may conclude from (A. 28) that Unl s =0 on the inside 
of S and hence also on the outside. 

Consider next the volume bounded by S, F, B and ER. The reasoning 
leading to (A. 15) and (A. 16) holds also for U(P,t). Define 

Eext  (t) = ~ f f; (VU) 2 + 2g U t dS. 
V 

( i) 
E~x t (t)= if Ut UndS + iI Ut Uy +g Utt dS 

S F 

+ ff UU R dS. 

E R 

The integral over S vanishes because Un=0 , that over F because of (A. 26), 
and the last one vanishes as iq--~ Qo. Hence, 

E x t (t) : E ~ x ~  (o) : 0. 

As above, we conclude again that 

U(P, t) : 0 outside S. 

It now follows immediately from 

Z {r ( P , t ) : 4 ~ r r  

t h a t  

r  t) = 0. (n. 33) 

(A. 30) 

(A. 31) 

(A. 32) 

The first integral vanishes because of (A. 23), the second because of (A. 26). 
Hence 
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APPENDIX III 

It has been ment ioned  e a r l i e r  that un iqueness  of solut ion of the va r ious  
in tegra l  equat ions fol lows f rom a s l ight  modi f ica t ion  of V o l f e r r a ' s  or iginal  
a rgument .  The ques t ion  of ex i s t ence  of solut ion can be r educed  to the s ame  
ques t ion  for  a F r e d h o l m  in tegra l  equat ion of the second kind. 

In o r d e r  to see  this,  we in t roduce  the following Lap lace  t r a n s f o r m s :  

~ (P , s )  = s / / e  "= ~(P , t )d t  

= r +o) + l:e "st Ct(P, t)dt 

1 i r" -s t  
= ~(P, +o) + ~ Ct(P, +o) + ~ ')o e ~tt (P, t)dt, (A. 34) 

v~ (P, s) = s f : e 'S t  v~ (P, t)dt, (A. 35) 

G(P; Q; s) = s f'e "st 
~O 

If is s t r a i gh t fo rwa rd  to 
take the fol lowing f o r m s  

G(P; Q; t)dt. (A. 36) 

conf i rm that the in tegra l  equat ions  for  r and ~k 
a f t e r  t r ans fo rma t ion :  

= 4 7r #(p, o) + ~ ~(Q, o)G,(P;  Q; s)ds  
s 

+ J j  [vv (Q, s ) - vv (Q, o ) ]G(P;Q;  s)ds  
S 

- / /  [Yt (~, ~, o) + sY(~, ~, o)] G(P; ~, o, ~, s)d~ d~, 
P 

(A. 37) 

4 ~ r ~ k ( P , s ) + l /  ~k(Q,s)5~(p;Q;s)dS=ff ni(Q)G(P;Q; s)dS. (A. 38) 
s $ 

The in tegra l  equat ions  for  the L a p l a c e  t r a n s f o r m s  of the o ther  potent ia l  
functions which have been  in t roduced can be deduced i m m e d i a t e l y  f rom the 
f i r s t  one above.  

The function G(P;Q;  s) has the s ame  s t r u c t u r e  as G(P;Q;  t), i . e . ,  

~ 1 + fi(p;  Q; s) (A. 39) G(P; Q; s) = 

where  H is ha rmonic  in the region y < 0. Hence,  if one le ts  P converge  
to a point of the su r f ace  S, the 47r's above a re  r ep l aced  by 2~r's and the 
equat ions  appea r  to be typical  of those o c c u r r i n g  in Neumann p r o b l e m s  in 
potent ia l  theory .  This  is not the case ,  however ,  fo r  the su r f ace  S is not 
n e c e s s a r i l y  c losed  and the condit ion sa t i s f i ed  by G on the f ree  su r f ace ,  

s2G(x, y, z; ~ ,o ,  ~; s) + gG~ = 0 (A. 40) 
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d o e s  n o t  a l l o w  r e f l e c t i o n  o f  t h e  l o w e r  h a l f - s p a c e  i n t o  t h e  u p p e r  o n e .  H e n c e ,  
o n e  m u s t  d e a l  d i r e c t l y  w i t h  t h e  i n t e g r a l  e q u a t i o n s  ( A .  37 )  o r  ( A ,  3 8 ) .  I n  t h e  
c a s e  o f  s t e a d y  h a r m o n i c  o s c i l l a t i o n ,  i n  w h i c h  t h e  s i g n  o f  t h e  f i r s t  t e r m  i n  
( A , 4 0 )  i s  c h a n g e d ,  F r i t z  J o h n  ( 1 9 5 1 ) ,  h a s  b e e n  a b l e  t o  p r o v e  e x i s t e n c e  o f  
a s o l u t i o n  f o r  a s i m i l a r  e q u a t i o n  u n d e r  c e r t a i n  c o n d i t i o n s ,  s o  t h a t  i t  s e e m s  
r e a s o n a b l e  t o  b e  h o p e f u l  i n  t h e  p r e s e n t  c a s e .  
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